Visually-Grounded Library of Behaviors for
Manipulating Diverse Objects across Diverse
Configurations and Views

Jingyun Yang* Hsiao-Yu Tung* Yunchu Zhang* Gaurav Pathak
Ashwini Pokle Christopher G Atkeson Katerina Fragkiadaki
Carnegie Mellon University
{jingyuny,htung,yunchuz,gauravp,apokle,cga,kfragki2}@andrew.cmu.edu

Abstract: We propose a visually-grounded library of behaviors approach for
learning to manipulate diverse objects across varying initial and goal configu-
rations and camera placements. Our key innovation is to disentangle the stan-
dard image-to-action mapping into two separate modules that use different types
of perceptual input: (1) a behavior selector which conditions on intrinsic and
semantically-rich object appearance features to select the behaviors that can suc-
cessfully perform the desired tasks on the object in hand, and (2) a library of
behaviors each of which conditions on extrinsic and abstract object properties,
such as object location and pose, to predict actions to execute over time. The
selector uses a semantically-rich 3D object feature representation extracted from
images in a differential end-to-end manner. This representation is trained to be
view-invariant and affordance-aware using self-supervision, by predicting vary-
ing views and successful object manipulations. We test our framework on pushing
and grasping diverse objects in simulation as well as transporting rigid, granular,
and liquid food ingredients in a real robot setup. Our model outperforms image-
to-action mappings that do not factorize static and dynamic object properties. We
further ablate the contribution of the selector’s input and show the benefits of the
proposed view-predictive, affordance-aware 3D visual object representations.

Keywords: Robot Learning, Visual Representation, Interactive Perception

1 Introduction

Object manipulation in unstructured environments is challenging since methods to manipulate ob-
jects largely depend on the object’s visual appearance. One approach to capture the dependence
between actions and visual features is to learn a direct mapping from image to actions with deep
neural networks [1, 2, 3]. Despite their flexibility, such end-to-end image-to-action mappings have
been shown to be data aggressive [4], and cannot easily generalize across objects, camera view-
points, or scene configurations [5].

Approaches that abstract away object details and encode only a subset of their properties, e.g., their
3D locations and velocities [6] or 3D keypoints [7, 8] make the state-to-action mapping easier to
learn with less data. However, this abstraction may substantially limit the range of objects that
a policy can handle, since useful information (object shapes, softness, weight, and material, for
example) for the downstream task may be ignored. The challenging question is: how can we design
a framework for object manipulation that uses abstract representations for sample efficient behavior
learning, but at the same time is capable of utilizing semantically-rich representations for handling
diverse objects and views.

We propose Visually-grounded library of BEhaviors (V-BEs), a hierarchical framework for vision-
based object manipulation. Our main contribution is that the two levels of our policy hierarchy use
different visual representations. At the lower level of the hierarchy, a behavior library contains a set
of distinct behaviors each of which operates on an abstract object state representation that captures

* Equal contribution.

5th Conference on Robot Learning (CoRL 2021), London, UK.

Generalize across different Generalize across different Generalize across different
objects camera viewpoints initial configurations

Figure 1: We propose a novel policy representation that generalizes to unseen objects, object place-
ments and camera views.

dynamic properties of objects in the environment, such as object and gripper positions over time.
Behaviors can be redundant, use different state abstractions, be closed loop or open loop, and be
learned or manually engineered with different algorithms [9, 10, 11]. At the higher level of the
hierarchy, a selector is trained using environment interactions to associate objects to behaviors that
can successfully manipulate them. This selector takes as input RGB-D images of the scene, maps
them to semantically-rich and view-invariant 3D object feature representations [12], and outputs
the behavior that best suits the presented object and task. The decomposition of visual information
into a perceptually rich selector network and behaviors with state abstraction makes the behaviors
easier to learn with reinforcement learning or be designed by an engineer, and the selector easier to
learn by trial-and-error learning as it does not bear the burden of producing low-level actions. At
test time, we use 3D object detectors to localize the object, and present its location and size to the
low-level controllers when necessary.

Our second contribution is proposing a visual representation for our behavior selector that is robust
to changing camera viewpoint (with respect to a non-changing robot torso), as well as object place-
ments. We use the differentiable 2D-to-3D neural networks of Tung et al. [12] to map an input
RGB-D image alongside camera intrinsics and extrinsics to transform 3D visual scene feature maps
from the current camera viewpoint to the world frame, ensuring that visual features are bound to a
static world frame—that coincides with the frame of the agent’s body—and do not change dramat-
ically while the camera moves. The 3D visual feature representations learn based on environment
interactions to embed objects close to the behaviors that can manipulate them. They are further
trained from the auxiliary task of view prediction using a multi-view camera setup, which encour-
ages the model to complete missing information from the current view so the 3D visual feature maps
are consistent across views and through occlusions.

We test the proposed model in both simulated and real robot setups. In simulation, we consider two
manipulation tasks: pushing and grasping. We show that our model can manipulate diverse objects
and generalize the learned skills to unseen objects with varying object starting positions, initial
poses, goal locations, and camera viewpoints. We show that our model outperforms existing end-
to-end image-to-action mappings [4] and state abstracted object-to-action mappings that use only
3D object locations [6]. We ablate the contribution of our higher-level 3D feature representation
used in our selector and then compare against 2D pretrained baselines. Lastly, we test our model
in a real robot setup where the robot transports rigid, granular, and liquid objects onto a plate.
We provide supplementary materials including additional qualitative results at https://yjy0625.
github.io/projects/v-be/.

2 Related Work

Libraries of Behaviors: Libraries of behaviors have been considered in many previous works, and
library elements have been called action, motion, behavioral, or motor primitives, parameterized
policies, options, chunks, macros, subroutines, behavioral units, and skills, as well as many other
terms. However, most previous work either assumes that the environment state is known and does
not use perception, or has a different approach to perception than ours. Work of Neumann et al.
on modular policies [13] defines a motor primitive as a mapping from a robot’s joint angles and
velocities and not the locations of objects. Rather, object locations are used as context for selecting
a motor primitive. This means i) motor primitives are “blind” to the object 3D location throughout
the episode, and ii) object appearance is discarded which means the library of primitives cannot
handle object variability. Work of de Silva [14] on parameterized policies similarly considers as
the contextual vector the desired goal location of a dart, and learns a mapping from this location
to policy parameters, where each policy operates only over the robots’ joints and is represented
as a Dynamic Motion Primitive (DMP) [15, 16, 17]. To extend DMPs to tasks involving physical

https://yjy0625.github.io/projects/v-be/
https://yjy0625.github.io/projects/v-be/

a 2?;334) Retrieval Behavior
oBJquaT | — > @ Policy —» @ Action Query Keys Library
1,000 (Visual Features)

a 3D centroids and 3D poses to action mapping B | |

al - Action
. @ s — @ s apd N S e ®

n Image to action mapping e V-BE (Ours): visually-grounded library of behaviors

Figure 2: Comparison of our model with previous approaches. In contrast to state-to-action or
image-to-action mapping, the proposed framework decomposes a policy into a behavior selection
module and a library of behaviors to select from. The decomposition enables these modules to work
on different representation: the selection module operates in a semantically-rich visual feature space,
while the behaviors operates in an abstract object state space that facilitate efficient policy learning.

interactions, Kroemer et al. [18] parameterize DMPs based on the distance of an object part from
the gripper, but only consider known object 3D shapes. Strudel et al. [19] use a depth frame as
input to a meta-policy that selects skills to execute. However, the use of modularity over skills is
for temporal sequencing: there is no mixture of behaviors per manipulation task, rather an image to
action mapping is learned with behavior cloning from demonstrations.

Deep Reinforcement and Imitation Learning for Object Manipulation: Current work in (deep)
reinforcement learning typically considers only one monolithic policy learned via reinforcement
learning [9, 20, 21], imitation learning [22, 23, 1], or a combination of the two [24, 25]. Most
approaches take as input 3D object and gripper centroids, orientations, and velocities, and ignore
contextual visual information [26]. Existing methods are commonly trained in a fixed environment
and evaluated in terms of their ability to discover a policy rather than their ability to generalize to
previously unseen circumstances, e.g., novel objects and views, which is the goal of this work.

Methods that do aim to generalize across objects learn a mapping from images-to-actions [4], depth-
to-actions [27] or pointcloud-to-actions [28, 29]. They have been successful in various tasks includ-
ing object grasping [27, 30] and object pushing from a fixed camera view [31, 4]. Seminal works of
[4, 32] train an image-to-action deep neural network by imitating trajectories obtained from planners
that operate in a low-dimensional state space. Nevertheless, such monolithic image-to-action deep
mappings don’t generalize well across different camera viewpoints [5, 33, 34] and objects. Works
that attempt to transfer visuomotor policies learned in simulation to the real-world often require
identical placement of the camera in the real world [35, 6]. Florence et al. [36] train manipulation
policies parameterized by the 2D or 3D locations of a designated set of visual descriptors obtained
from RGB-D images, and show their policies generalize across objects of the same object category,
e.g., shoes of different shapes. The proposed work further allows generalization across object cate-
gories, and no explicit descriptor selection or optimization is necessary. Furthermore, our framework
permits each behavior to use a different state representation.

Hierarchical Reinforcement Learning (HRL): Most existing HRL methods [37, 38] focus on
discovering behaviors and temporally sequencing them for long-horizon tasks. This paper instead
uses a hierarchical vision-based policy architecture to improve model generalization across objects,
configurations, and viewpoints.

Please check supplementary materials for additional discussion of related work.

3 Methods

Problem Setup We consider the problem of manipulating (e.g. grasping, pushing, etc.) diverse sets
of objects from various initial configurations and camera viewpoints. At training time, the agent
has access to training objects Oy,in, RGB-D images from J viewpoints vy, ...,v; € V, and it can
interact with the training object from randomly selected viewpoints. At test time, the agent has to
perform the same manipulation task as at training time on test objects Oy from selected viewpoints.
Performance is measured by the success rate of manipulating all test objects with random initial
configurations and camera viewpoints.

Our framework is comprised of two major components — (1) a library of behaviors I = {m; | i =
1,2,...,K} and (2) a selector function G. Given an RGB-D image I of the scene captured from
camera view v, denoted by I,, = {I, v}, and an object 3D bounding box o, the selector G obtains the

Crop to
Object

Behavior Selector G f =

Retrieval Key 1 PE;;I; Behavior 71 \

Execute Selected Behavior

M

GRNN | Behaviors
@ @ @ The robot interacts with training
. objects using behaviors in the library
) I to collect binary success or failure
3l

2D-to-3D
Lifting
outcomes as interaction labels.

- 0 ©
%‘ n 0 The collected interaction labels are
-

w 0 o [

D Transform

then used to train the behavior
selector.

M
Input Image (Camera Frame) (Robot Frame)

Figure 3: Overview of the proposed framework.

probability of successfully manipulating the object when applying behavior 7; on the object by com-
puting a query object feature representation F(I,,, 0) and compares it with learned key embeddings
k; = k(m;), i = 1,..., K associated with each behavior 7;,

G([U,O,ﬂi;¢, /{) :0'(<F(IU,O; (ZS)’/%» € [07 1]5 (1)

where ¢ is the learnable neural network parameters for function F, (-, -) is the inner product opera-
tion and o is the sigmoid function. We will detail the feature dimension of F(I,,,0; ¢) and & in the
next section. At test time, we select the behavior m; that has the highest probability of leading to
successful manipulation.

Each behavior 7; uses its own abstract state representation for the objects to manipulate, for exam-
ple, 3D object locations and 3D poses, and does not necessarily take into account other aspects of
the input image. Each behavior is designed or learns to handle only a subset of object shapes and
orientations. To handle a diverse set of objects and orientations, our selector learns to pick different
behaviors for different objects or orientations. One advantage of the modularity of our policy archi-
tecture is that each behavior can use its own state abstraction, such as object 6D-poses, 3D bounding
boxes, part-based 3D boxes, or 2D or 3D object keypoint locations [7]. Our framework supports
integrating a wide range of existing models, representations, and controllers as selectable behaviors.

In the rest of this section, we detail the architecture and training details of the behavior selector in
Section 3.1, and describe how we acquire a library of behaviors for grasping and pushing—the two
robot manipulation tasks we evaluate our framework on—in Section 3.2.

3.1 Visually-Grounded Behavior Selector (G)

The behavior selector G is a classifier that learns object-centric visual feature representation
F(I,,0; ¢) for the object box o in image view I,,, and behavioral key embeddings x* (i = 1,. .., K)
for the behaviors in the library to retrieve behaviors compatible with a particular object.

Training the selector with interaction labels. We learn the object feature representation and be-
havioral keys through trial-and-error. In each trial, our agent applies a randomly sampled behavior 7;
on an object o in the workspace which results in binary success or failure outcome ¢ € {0, 1}, which
we call interaction labels. Agent interactions are organized as tuples of the form (I, 0, m;, £). With
the interaction experience as training data 7, we train the feature encoder f and behavioral keys
k; = k(m;) G =1,..., K) with the loss:

ﬁafford(“a d)) = Z BCE(évG(IUaoa ﬂ-i;d)? KJ)) = Z BCE(@,G((F(IU,O; ¢)7K/1>))
(Iy,0,m; ,0)ET (Iy,0,m;)ET

(2)
where BCE(y, p) = —y - log(p) — (1 — y) log(1 — p) is the binary cross entropy loss.

3D object feature representation. Our object feature representation F(I,, 0; ¢) is computed using
Geometry-aware Recurrent Neural Networks (GRNNs) of Tung et al. [12], which are end-to-end
differentiable architectures that map a single RGB-D image or a set of multi-view images to 3D
feature representation of the scene the image(s) depict. Given a posed image I,,, GRNNs obtain
scene-centric 3D feature representation M = GRNN(I,) € RE*WXDXC through differentiable

2D-to-3D operations, 3D convolution-based refinement, and 3D rotation operations that align the
3D feature representations with the robot’s coordinate frame (as opposed to camera frame), with
W, H, D denoting the width, height and depth of the scene map and C denotes the feature dimension
of the 3D scene feature map.

From the scene map M, we obtain object-centric feature representation F(I,,, 0; ¢) = crop(M, o) €
R64x64x64x32 1y cropping the scene map using a fixed-size axis-aligned box o, centered around the
object we wish to manipulate. The feature cropping operation is similar to the one used in Mask-
RCNN [39]. The retrieval policies keys are also learned in the same representation space. Thus,
both F(I,,,0;¢) and k;, (i = 1, ..., K) have length 64 x 64 x 64 x 32 in the experiments.

3D object detector. We learn a detector with 3D Mask-RCNN built on top of the GRNN s feature
encoder [12]. We use groundtruth 3D object boxes at training time, and predicted 3D object boxes
at test time, where we train our representation to detect objects in 3D.

View prediction and occupancy prediction as an auxiliary task. We use view prediction and
occupancy prediction as an auxiliary task to help our image encoder generalize better in its ability
to select behaviors. These two self-supervised prediction tasks have been shown to provide a useful
pretraining or co-training objective for 3D object detection in [40]. Given an input posed image I}
and a query view ¢, the overall self-supervised prediction loss reads:

N
Eself—pred(Cba 0, 77) = Z ”PO(GRNNd)(I;L)a qn) - I_;LH% + ”OCCW(GRNN(ﬁ(Iq?)) - OCC””l, (3)

n=1

view prediction loss occupancy prediction loss

where Py(M, g) is a projection function that projects a 3D feature map M from the query viewpoint
q to a 2D feature map and decodes it to a target image /;" using an image decoder with neural

network weights 6, Occ, (M) € R64%64x64 j5 4 yoxel occupancy prediction function that predicts
a 3D occupancy map from an input 3D feature map M using a single 3D convolution layer with
weights 1, and occ” is the estimated occupancy map computed from all available input views in
the n'" data point by voxelizing the unprojected point clouds from all available depth images. We
train the model from unlabelled multi-view images captured around the table by simply moving the
cameras, capturing the images, and recording the corresponding camera locations.

The final objective for training the affordance-based visual features is

m}in{ﬁin{;nige £(I€, 9, 0, 77) = £self—pred(¢> 0, 77) + A Eafford('“ﬂa ¢)> €]

where)\, is a hyperparameter for balancing the two losses.

3.2 Building a Library of State Abstracted Behaviors

Any existing behaviors, whether engineered or learned using reinforcement or imitation learning,
can be included in our library. This flexibility is a contribution of our modular architecture. In this
paper, we consider three common manipulation tasks: pushing, grasping, and transporting. We build
appropriate behavior libraries for each.

In pushing, the behaviors are deterministic goal conditioned policies a; = (s, g) that map a state
of the environment and the robot s; = [s¢, s}] and a goal state g to an action a; at time step ¢. The
environment state s§ is the 3D object centroid and the robot state s} is the gripper 3D location, pose,
and whether it is opened or closed. Actions include 3D translation, opening (position control), and
closing (force control) of the gripper. A goal state g is a target centroid location for the object. We
use a total of 25 goal conditioned policies — one is trained from the whole set of objects, while the
others are trained on disjoint subsets of object configurations organized based on object category
and initial poses. We train all policies using deterministic policy gradients (DDPG) [25] with goal
relabelling (HER) [9] while randomizing initial and goal object 3D locations.

In grasping, we design controllers 7 (a¢|g; p9"**P, ¢9"**P) which given a 3D grasping point pI"*5P &
R3 relative to the center of the object and a grasping 3D angle ¢97%? € R2, move the gripper
(open loop) to the grasping 3D point location, close it, and move it to the desired goal location. The
grasping angle ¢9"%%P consists of two numbers describing the yaw of the gripper and the elevation
angles between the gripper and the table surface. When the elevation angle is smaller than 90
degrees (not top-down grasps), we constrain the gripper to point toward the center of the object on

the x-y plane. We manually select 30 different controllers including top-down grasps with different
yaw orientations (top-grasps) and grasps from the side with different elevation angles of the gripper
(side-grasps). We empirically found that these parameterized controllers are quite stable and can be
shared across multiple objects. More details are provided in the supplementary materials.

4 Experiments

Our experiments aim to answer the following questions: (1) Does the proposed library-based ap-
proach outperform existing methods that use a single combined perception and policy module, ei-
ther using 2D images, 3D object locations, or 3D scene feature maps as input? (2) Is the proposed
view-invariant and affordance-aware 3D feature representation a necessary choice for the selector?
(3) Does the method work on a real robot? We test our model on grasping and pushing a wide variety
of objects in the MuJoCo simulator [41] and further test a transporting task on a real-world Franka
Panda robot arm.

4.1 Simulation Experiments

Our simulated environment consists of a Fetch Robot equipped with a parallel-jaw gripper. The
robot is positioned in front of a table of height 0.4m. To obtain the visual observations, on each
episode we choose 3 random cameras from cameras placed at 30 nominal different views including
10 different azimuths ranging from 0° to 360° combined with 3 different elevation angles from 20°,
40°, 60°. All cameras are looking at the center of the table top, and are 0.5 meter away from that
point. All images have size 128 x 128.

Task Descriptions: In the grasping task, the agent has to grasp an object and move it to a specified
target location above the table. We use 274 distinct object meshes from 6 categories in ShapeNet
[42] including toy buses, toy cars, cans, bowls, plates, and bottles. The materials and densities of all
objects are identical. We randomly split the dataset into 207 training objects, and 67 testing objects.
After augmenting the meshes with random scaling from 0.8 to 1.5 and random rotations around
the vertical z-axis, we get a total of 800 distinct object configurations (object instance and pose),
600 for training and 200 for testing. At the start of each episode, an object is placed in an area of
30cm x 16cm around the center of the table, and a goal is sampled uniformly 10 ~ 30cm away
from the gripper’s initial position. An episode is successful if the object centroid is within 5cm of
the target at the final timestep.

In the pushing task, the agent has to push an object placed on the table to a specified target location.
We use 100 objects from 12 categories in ShapeNet [42]: baskets, bowls, bottles, toy buses, cameras,
cans, caps, toy cars, earphones, keyboards, knives, and mugs. After augmentation and splitting to
train and test sets, we obtain 615 training object configurations and 200 for testing. The initial and
the goal position of the object are both uniformly sampled to be within 15¢m of the center of the
table along both x-axis and y-axis, although we resample if that location is already in the goal area.
An episode is successful if the object centroid is within 5em of the goal within 50 timesteps.

Baselines: We compare our method with various learning and non-learning based methods for object
manipulation:

(a) Single Behavior w/ Abstract 3D State (Abstract 3D) [9, 25]: a policy takes as input ground truth
3D bounding box of the object and gripper and outputs actions.

(b) Single Behavior w/ Abstract 3D State and 2D Images (Abstract 3D + Image): a policy takes
both RGB-D images and the ground truth 3D bounding box as inputs and outputs actions. Our
architecture resembles that of [43], but we further include ground truth object position as extra
inputs to the model. For fair comparisons to other methods, the model only takes as input the
current state as opposed to the states in 5 past steps, as in [43].

(c) Single Behavior w/ 3D Feature Tensor (Contextual 3D): a policy takes as input RGB-D images
and the ground truth 3D bounding box and outputs actions. Different from (b), the model first
transforms the image into a view-invariant 3D feature tensor using GRNNs [12], then converts
the 3D feature tensor into a feature vector though three 3D-convolutional layers and a fully
connected layer, and concatenates it with the rest of the inputs to predict actions.

(d) Owurs, Library of Behaviors w/ Visual Selector (V-BEs): Our model takes the same input as (b)
and (c). The 3D bounding boxes are used as input to all the behaviors. The RGB-D images are
transformed into 3D affordance-aware visual features and treated as input to the selector.

Single Behavior Library of Ablation study on the selector’s
Behaviors visual feature representation
Abstract 3D Abstract 3D Contextual V-BEs V-BEs w/ V-BEs w/o Fine-tuning
[9, 25] + Image 3D (Ours) 2D features on Interaction Labels [45, 12]
grasping 0.30 0.35 0.20 0.78 0.46 0.31
pushing 0.83 0.70 0.10 0.88 0.81 0.46

Table 1: Success rates on grasping and pushing unseen objects. We also ablate the proposed method
with selectors operating on varying representations.

We train the baselines with different learning methods including behavior cloning [4], DDPG-HER
[11, 9] and DAGGER [44]. We report the best performance we got by training the model with these
different methods. We also attempt to make all the models have similar number of parameters so
the comparison is fair. However, larger networks are empirically harder to train and do not converge
well, so we instead increase the number of parameters in smaller networks until their performance
saturates. For pushing, we found that using DDPG-HER is enough to lean a good Abstract 3D policy
from scratch. For abstract 3D + Image, we found it is critical to use behavior cloning from expert
demonstrations to obtain good policies. The expert demonstrations are obtained from trained expert
policies on single objects. For Contextual 3D, we include DAGGER to enforce behavior cloning
during execution. To train the grasping policies, we further include human demonstrations in the
replay buffer when training it with DDPG-HER. Both abstract 3D + Image and Contextual 3D are
trained with DAGGER since offline behavior cloning is insufficient.

4.2 Single Behavior versus a Library of Behaviors

We compare the proposed model with models that do not use a library-based approach, i.e., single
behavior approaches. As shown in Table 1, our method outperforms all the single behavior base-
lines. Abstract 3D performs well, but since it does not use any visual information, its performance
saturates at around 0.8 for pushing and 0.3 for grasping. Abstract 3D performs poorly for grasping.
The learned behaviors do not transfer well to new objects. Adding a 2D image helps, but not dramat-
ically (see Abstract 3D + Image in Table 1). Although 3D feature maps obtained from GRNNs are
semantically rich and can handle varying viewpoints, the mapping to actions is harder to learn due to
the higher dimensionality of the 3D scene map, resulting in under-fitting models. Our model takes
advantage of both abstract and semantically rich representation and thus can handle better object
variability and transferability. The combinatorial nature of the proposed method allows the model
to capture the multi-modality in trajectory generation.

4.3 The Necessity of Building the Selector with the Proposed 3D Representations

Next, we show the importance of using view-invariant 3D visual feature representations and fine-
tuning the selector with interaction labels. We compare our method with two baselines: (a) a model
with a selector that learns the visual affordance features using 2D visual features extracted from 2D
CNNs, and (a) a model with a selector that operates over 3D visual feature representation learned
only with the view and occupancy prediction loss, as suggested in [45, 12], without fine tuning
with interaction labels. See Table 1 for the results. Our method significantly outperforms these two
baselines, which shows the importance of both proposed components. To fully test the power of
existing 2D CNNs, we also tested 2D feature selector with existing VGG network [46] pretrained
on ImageNet and fine-tuned on our interaction labels. However, the performance (a success rate of
0.78 on pushing) does not differ too much with shallower 2D CNNs trained from scratch.

4.4 Transporting Task on a Real Robot

We test our model on a 7-DOF Franka robot arm equipped with a parallel-jaw gripper (using [47]’s
software stack) for a transporting task, where the robot needs to transport various rigid, granular, or
liquid food ingredients from random initial positions and poses onto a plate (see Figure 4). We set
up 4 Intel RealSense RGB-D cameras that have full view of the workspace around the the center of
the table. In each trial, an object is placed in a 50cm x 30cm region on the table, and the goal is
transport all objects to a plate 25cm to the left of the starting region. Granular objects and liquids
are placed inside containers in the beginning of the trial. An episode is considered successful if
the object is successfully transported into the plate. For granular objects and liquid, an episode is
considered successful if at least half of the total quantity ends up in the plate.

Training Objects Testing Objects Workspace Setup

Figure 4: Real robot experimental setup. We set 4 cameras around the table that cover different
viewpoints of the workspace. 3 out of 4 cameras are shown in the right most image. An extra
topdown camera is used, but it is clipped from the image.

Figure 5: Sample real robot executions. Each row shows an execution trial during test time. Our
robot can successfully transport rigid, granular, and liquid food ingredients to a target plate.

We construct our library of behaviors with 26 controllers, in which 13 of them are pick-and-place
controllers from various grasping angles and the other 13 are pick-and-pour controllers using the
same grasping angles as the pick-and-place ones. At evaluation, we randomly select 3 views from
4 possible camera views to obtain RGB-D images as inputs to the learned selector. We use 20 rigid
objects, 20 granular objects, and 12 bottles of liquids for our experiment, and we split them into
38 training object and 14 testing objects. To train our model, we collect a total of 3510 interaction
labels by running the 26 behaviors on the training objects with random initial poses and using the
labels to finetune the visual selector with the objective specified in Equation (4).

Our model achieves a success rate of 88.6% on the test set. We compare our model with two base-
lines: 1) an image-to-action model trained with behavior cloning (Image), and 2) a hierarchical
model that uses a library of behaviors and a selector with 2D representations (V-BEs with 2D fea-
tures). We use the data collected during the interaction label collecting process as the data used to
train both baselines. For the Image baseline, we are not able to get it to work at all, while we did
make it work in simulation where there is more data. It may need more data to learn a general and
robust policy in the real world [48]. For the V-BEs with 2D features baseline, we get a success rate of
38.0% which is worse than the proposed model. This again shows the importance of operating the
selector in the proposed view-invariant and object-centric 3D feature space. Sample executions and
transporting objects in clutter are visualized in Figure 5 and included in our supplementary video.

5 Conclusion

We have presented V-BEs, a hierarchical policy architecture where 3D object visual feature repre-
sentations are used to select from a library of behaviors. The proposed modular architecture supports
both low-level behaviors and the selector to be learnt in a data efficient manner. We have shown re-
sults on pushing and grasping diverse objects in simulation and in the real world, across diverse
viewpoints. Our method outperforms image-to-action monolithic policies of previous works, as
well as policies that operate on 3D locations and velocities alone. Since our framework is sample-
efficient and simple to run, we can easily deploy complex transporting skills on a real robot arm.

https://yjy0625.github.io/projects/v-be/

Acknowledgments

This work is supported by Sony AI, NSF award No 1849287, DARPA Machine Common Sense, an
Amazon faculty award, and an NSF CAREER award.

References

[1] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel. Deep imitation learning
for complex manipulation tasks from virtual reality teleoperation. /CRA, pages 1-8, 2018.

[2] D. Gandhi, L. Pinto, and A. Gupta. Learning to fly by crashing. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3948-3955. IEEE, 2017.

[3] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,
A. A. Efros, and T. Darrell. Zero-shot visual imitation. In /ICLR, 2018.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

[5] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning, 2019.

[6] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3-20, 2020.

[7] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese. Keto: Learning keypoint representations
for tool manipulation. arXiv preprint arXiv:1910.11977, 2019.

[8] L. Manuelli, Y. Li, P. Florence, and R. Tedrake. Keypoints into the future: Self-supervised
correspondence in model-based reinforcement learning, 2020.

[9] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. arXiv preprint arXiv:1707.01495,
2017.

[10] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim. Optimization based controller design and
implementation for the atlas robot in the darpa robotics challenge finals. In 2015 IEEE-RAS
15th International Conference on Humanoid Robots (Humanoids), pages 1028—-1035, 2015.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

[12] H.-Y. F. Tung, R. Cheng, and K. Fragkiadaki. Learning spatial common sense with geometry-
aware recurrent networks. In Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[13] G. Neumann, C. Daniel, A. Paraschos, A. Kupcsik, and J. Peters. Learning modular policies
for robotics. Frontiers in computational neuroscience, 8:62, 2014.

[14] B. D. Silva, G. Konidaris, and A. Barto. Learning parameterized skills, 2012.

[15] E. Riickert and A. d’Avella. Learned parametrized dynamic movement primitives with shared
synergies for controlling robotic and musculoskeletal systems. Frontiers in computational
neuroscience, 2013.

[16] S. Schaal. Dynamic movement primitives-a framework for motor control in humans and hu-
manoid robotics. In Adaptive motion of animals and machines, pages 261-280. Springer, 2006.

[17] F. Stulp, E. Theodorou, and S. Schaal. Reinforcement learning with sequences of motion
primitives for robust manipulation. Robotics, IEEE Transactions on, 28:1360-1370, 12 2012.
doi:10.1109/TRO.2012.2210294.

[18] O.Kroemer and G. S. Sukhatme. Learning relevant features for manipulation skills using meta-
level priors. CoRR, abs/1605.04439, 2016. URL http://arxiv.org/abs/1605.04439.

[19] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, and C. Schmid. Learning to combine
primitive skills: A step towards versatile robotic manipulation, 2019.

http://dx.doi.org/10.1109/TRO.2012.2210294
http://arxiv.org/abs/1605.04439

[20] O. Kiline, Y. Hu, and G. Montana. Reinforcement learning for robotic manipulation using
simulated locomotion demonstrations, 2019.

[21] N. Wahlstrom, T. B. Schon, and M. P. Deisenroth. From pixels to torques: Policy learning with
deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

[22] N. Ratliff, J. A. Bagnell, and S. S. Srinivasa. Imitation learning for locomotion and manipula-
tion. In 2007 7th IEEE-RAS International Conference on Humanoid Robots, pages 392-397,
2007.

[23] M. Sieb, X. Zhou, A. Huang, O. Kroemer, and K. Fragkiadaki. Graph-structured visual imita-
tion. In Conference on Robot Learning (CoRL), 2019.

[24] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa, S. Savarese, and L. Fei-Fei.
Surreal: Open-source reinforcement learning framework and robot manipulation benchmark.
In Conference on Robot Learning, pages 767-782. PMLR, 2018.

[25] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[26] OpenAl, 1. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder,
L. Weng, Q. Yuan, W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand, 2019.

[27] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. Aparicio, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. 07 2017. doi:10.15607/RSS.2017.XII1.058.

[28] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. CoRR, abs/1905.10520, 2019. URL http://arxiv.org/abs/1905.10520.

[29] Y. Qin, R. Chen, H. Zhu, M. Song, J. Xu, and H. Su. S4g: Amodal single-view single-shot
se(3) grasp detection in cluttered scenes, 2019.

[30] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. CoRR, abs/1509.06825, 2015. URL http://arxiv.org/abs/1509.06825.

[31] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experi-
ential learning of intuitive physics. arXiv preprint arXiv:1606.07419, 2016.

[32] T. Tosun, E. Mitchell, B. Eisner, J. Huh, B. Lee, D. Lee, V. Isler, H. S. Seung, and D. Lee.
Pixels to plans: Learning non-prehensile manipulation by imitating a planner. arXiv preprint
arXiv:1904.03260, 2019.

[33] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. Learning by playing solving sparse reward tasks from scratch. In
International Conference on Machine Learning, pages 4344-4353. PMLR, 2018.

[34] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic
for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017.

[35] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine,
R. Hadsell, and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping
via randomized-to-canonical adaptation networks. In CVPR, pages 12627-12637, 2019.

[36] P.Florence, L. Manuelli, and R. Tedrake. Self-supervised correspondence in visuomotor policy
learning, 2019.

[37] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum. Hierarchical deep rein-
forcement learning: Integrating temporal abstraction and intrinsic motivation. arXiv preprint
arXiv:1604.06057, 2016.

[38] J. T. Springenberg, K. Hausman, M. Riedmiller, N. Heess, and Z. Wang. Learning an embed-
ding space for transferable robot skills. 2018.

[39] K. He, G. Gkioxari, P. Dollar, and R. B. Girshick. Mask R-CNN. CoRR, abs/1703.06870,
2017. URL http://arxiv.org/abs/1703.06870.

10

http://dx.doi.org/10.15607/RSS.2017.XIII.058
http://arxiv.org/abs/1905.10520
http://arxiv.org/abs/1509.06825
http://arxiv.org/abs/1703.06870

[40] A.W.Harley, S. K. Lakshmikanth, F. Li, X. Zhou, H.-Y. F. Tung, and K. Fragkiadaki. Learning
from unlabelled videos using contrastive predictive neural 3D mapping. ICLR, 2020.

[41] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026—
5033. IEEE, 2012.

[42] A.X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[43] T.Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imitation
learning for complex manipulation tasks from virtual reality teleoperation. In /CRA, pages
1-8. IEEE, 2018.

[44] S. Ross, G. J. Gordon, and J. A. Bagnell. No-regret reductions for imitation learning and
structured prediction. In In AISTATS. Citeseer, 2011.

[45] A.W. Harley, F. Li, S. K. Lakshmikanth, X. Zhou, H.-Y. F. Tung, and K. Fragkiadaki. Embod-
ied view-contrastive 3d feature learning. arXiv preprint arXiv:1906.03764, 2019.

[46] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[47] K. Zhang, M. Sharma, J. Liang, and O. Kroemer. A modular robotic arm control stack for
research: Franka-interface and frankapy. arXiv preprint arXiv:2011.02398, 2020.

[48] S.Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection. CoRR, abs/1603.02199, 2016.
URL http://arxiv.org/abs/1603.02199.

11

http://arxiv.org/abs/1603.02199

	Introduction
	Related Work
	Methods
	Visually-Grounded Behavior Selector (G)
	Building a Library of State Abstracted Behaviors

	Experiments
	Simulation Experiments
	Single Behavior versus a Library of Behaviors
	The Necessity of Building the Selector with the Proposed 3D Representations
	Transporting Task on a Real Robot

	Conclusion

