
UCLA CS275 18W Final Report
A Reinforcement Learning Approach for Locomotion

Wandi Cui
University of California, Los Angeles

wandicui@ucla.edu

Ziqi Yang
University of California, Los Angeles

larittic@ucla.edu

Zeyu Zhang
University of California, Los Angeles

zeyu.zhang@cs.ucla.edu

Yunchu Zhang
University of California, Los Angeles

yunchuzhang@ucla.edu

ABSTRACT
In this project, we explored a reinforcement learning approach and
an evolution strategy for physics-based character locomotion skills
training. The locomotion skills developed for our physics-based
character will not only target �at terrain but also more complex
environment where the character needs to navigate a sequence of
challenging terrain with rough ground, stumps, pitfalls, and stairs.
We implemented an evolution strategy and the Asynchronous Ad-
vantage Actor-Critic (A3C) algorithm on the BipedalWalker-v2
physical environment provided by OpenAI Gym. Both of two al-
gorithms led to good results with satisfying accumulated rewards.
Comparing these two algorithms, we decided that the agent trained
by the A3C algorithm is more stable and has more natural and
dynamic gaits. We then conducted further experiments on the ad-
vanced BipedalWalkerHardcore-v2 environment where obstacles,
pitfalls, and stairs are randomly generated. We also explored deeper
into the underlying explanation and analysis for the experiment
results.

1 INTRODUCTION
Bipedal robots have attracted more and more researchers’ attention
since 1990s due to the low energy consumption and their human-
like walking characteristics. Compared to wheeled andmulti-legged
robots, bipedal robots can be more adaptive to complex terrains (e.g.
uneven terrain, up/down stairs, stumps, pitfalls and etc.); and have
more �exible locomotion directions as well as speed range. It is not
di�cult to imagine that with so many advantages, humanoid robots
could be widely used in various �elds in the real world. For instance,
they can conduct rescue operations in dangerous circumstances
like �re, toxic gases or chemicals and explosives as a substitute for
human beings. Furthermore, they can also play an important role in
the service industry because of its advantages of human-computer
interaction.

However, bipedal locomotion is one of the most challenging
tasks in robotics. The control problems of walking with dynamic
balance are convoluted. Most scholars proposes deterministic and
analytic engineering approaches to solve bipedal walking control
problems, while some of researchers apply machine learning tech-
niques, such as reinforcement learning to this problem and make
similar achievements.

2 RELATEDWORK
Both evolutionary strategy and reinforcement learning approaches
succeed in addressing complicated control problems even though
they hold totally di�erent initial inspirations. Moreover, since deep
learning techniques perform excellent in so many �elds, some ap-
proaches are proposed to combine deep learning methods with
reinforcement learning as deep reinforcement learning methods.

Evolutionary strategy can be easily understand as a process of
taking samples from groups of individuals and making successful
ones produce future generations, which must come from biological
evolution. Thus, evolutionary methods solve control problems by
evolving the control policy in this way. In [1], the structure of
neural network is prede�ned, and each generation consisting of
candidate parameters is evaluated by environment. During the
process, the weights of the network are sampled from amultivariate
Gaussian distribution, and some candidates are selected to update
the distribution to gain the next generation. Paper [10] sticks to
di�erent idea with CMAES, which has accomplished numbers of
di�cult control tasks by evolve both the structure and theweights of
the network. A genetic encoding method is introduced to represent
the network e�ciently and historical markings are used to avoid
expensive topological analysis. [11], is an improvement of CMAES
assuming that the population of network parameters are drawn
from a certain distribution. Its aim is to maximize the expected
�tness.

Deep reinforcement learning (DRL) methods create a reinforce-
ment learning frameworkmerging reinforcement learning and deep
neural networks. Article [3] summarizes that this kind of measure
utilizes deep neural networks to approximate value function, policy,
state transition and reward. A large amount of progress has been
made in DRL since it was �rst proposed in [5]. Quite a few meth-
ods based on DRL are designed to tackle bipedal locomotion. The
approach in [6] describes a successful demonstration of training
a bipedal humanoid character to traverse rugged terrain in a two
dimensional simulation environment.Then in their paper [7], they
expand their work to train a bipedal humanoid character to achieve
complex locomotion tasks in a three dimensional environment
by building a hierarchical DRL framework. In the meantime, [2]
has also presents a method: Distributed Proximal Policy Optimiza-
tion (DPPO) to complete training a humanoid character navigating
through di�erent terrains in a three dimensional environment. In
the latest paper [9], the authors come up with a learning algorithm
based on the Recurrent Network-based Deterministic Policy Gradi-
ent (RDPG). They apply the Long-Short Term Memory (LSTM) to

realizing a partially observable Markov Decision Process (POMDP)
framework and provide a wonderful solution to the Bipedal-Walker
challenge in virtual environments of OpenAI.

3 SIMULATION ENVIRONMENT
In our project, we utilized both evolutionary strategy and rein-
forcement learning approaches to give solutions to BipedalWalker
challenge provided by OpenAI Gym. Gym is a toolkit for develop-
ing and comparing reinforcement learning algorithms. In addition,
Gym library has designed a variety of environments that we can
use to evaluate our algorithms.

First, we will introduce the BipedalWalker task of OpenAI Gym.
In this task, the robot agent perceives 24-dimensional observation
from the environment. The information includes 10-dimensional Li-
dar (visual) with range limit, 4-dimensional translational/rotational
displacement and velocity of hull, 8-dimensional rotational displace-
ment and velocity of bipeds, and 2-dimensional binary haptic on
foot. The environment runs episodically; and episodes terminate
when the hull of the agent hits the ground in environment, the
agent reaches the goal, or the maximum time limit exceeds. In fact,
there are two versions of the task, one is the normal version with
slightly uneven terrain; and the other is the hardcore version with
di�erent challenging terrains like stairs, stumps and pitfalls. We
tried both versions and reported our results in the following parts.

To comprehensively understand our challenge, we summarized
the following di�culties that need overcoming:

• The bipedal locomotion task is partially observable
• Due to the shape of the agent’s body, its center of gravity is
back-swept, which makes it more di�cult to keep balance
without falling backwards
• Stochastic environment

Since the environment is partially observable, the agent can only
perceive the environment in front it. Therefore, the agent has no
idea of what happened in the past and what is the whole picture of
the environment. For example, in Figure 1 (c), the agent does not
know it is over a pitfall since it can only perceive the world in front
of it, due to the limitation of the Lidar. Intuitively, the agent will
assume all the environment behind it is �at terrain. Therefore, it
will make some wrong perceptions as shown in Figure 1 (c) and (d).

Figure 1: Short-Term Memory with Queue Size 4

In order to address the problem of partial observation, we utilized
a short-term memory trick. As shown in Figure 1, we maintain a
�xed-size queue to record previous observations, we then combine
all the previous observations stored in the queue to form a new

observation. The intuition behind this is that the combined obser-
vation will help the character to reconstruct the whole picture.

4 METHODOLOGY
In this project, we explored two approaches to solve the
BipedalWalker-v2 problem—Evolution Strategy and Reinforcement
Learning based on A3C algorithm.

4.1 Evolution Strategy
Evolution Strategy (ES) is an optimization technique that has been
known for decades. It rivals the performance of standard reinforce-
ment learning (RL) techniques onmodern RL benchmarks (e.g. Atar-
i/MuJoCo), while overcoming many of RL’s inconveniences. Brie�y
speaking, ES is a scalable alternative to Reinforcement Learning
with the following advantages:
• It is simpler to implement because it has no need for back-
propagation.
• It is easier to scale in a distributed setting.
• It does not su�er in settings with sparse rewards.
• It has fewer hyperparameters.

We came across this method during exploring the possible ap-
proaches for BipedalWalker-v2. We found it extraordinarily conve-
nient to implement and simple to understand, speci�cally regarding
this problem. Intuitively, the ES algorithm can be best summarized
by "guess. check and optimize". Facing a learning problem, we
start with random parameters (a parameter vector w) as the ini-
tial weights for the model. For each step, we take the current w
and generate a population of n slightly di�erent parameter vec-
torw1,w2, ...,wn by jitteringw with gaussian noise, in which the
probability density function p of the Gaussian random variable z is
given by:

pG (z) =
1

σ
√
2π

e
− (z−µ)

2
2σ 2

where z represents the grey level, µ the mean value and σ the
standard deviation.

The n candidates will then be evaluated independently by run-
ning the corresponding policy network on the target environment.
After the evaluation, we’ll get the accumulated rewards in each
case, which will serve as the weights for them to get the weighted
sum ofw1,w2, ...,wn as the neww . Normally, the weight for each
wi is proportional to the total reward. In this way, it is ensured that
the parameter vector keeps moving towards the better results as
the more successful candidates have higher weights to contribute
to the next update. Mathematically, the procedure can be viewed as
equivalent to estimating the gradient of the expected reward in the
parameter space using �nite di�erences in n random directions.

The simplicity of ES can be best demonstrated by the following
example of optimizing a quadratic function using ES:

1 import numpy as np
2
3 def f (w) :
4 return −np . sum ((w − s o l u t i o n) ∗ ∗ 2)
5
6 a lpha = 0 . 0 0 1 # l e a r n i n g r a t e
7 sigma = 0 . 1 # n o i s e s t a n d a r d d e v i a t i o n
8 pop_ s i z e = 50 # p o p u l a t i o n s i z e
9 i t e r a t i o n = 500 # i t e r a t i o n t im e s

2

10 w = np . random . randn (3) # i n i t i a l g u e s s
11
12 for i in range (i t e r a r t i o n) :
13 N = np . random . randn (pop_s i ze , 3)
14 R = np . z e r o s (pop_ s i z e)
15 for j in range (p op_ s i z e) :
16 w_try = w + sigma ∗N[j]
17 R[j] = f (w_try)
18 A = (R − np . mean (R)) / np . s t d (R)
19 w = w + a lpha / (pop_ s i z e ∗ s igma) ∗
20 np . dot (N . T , A)

To further illustrate the ES algorithm, there are two points to
clarify. First, it is important to note that the term "evolution" here
means the abstract process of tweaking the parameter vector, which
can be seen as sampling a population of individuals and allowing
the more successful individuals to dictate the distribution of future
generations. Another point is the black-box optimization. In ES,
we forget entirely the existence of the agent, the environment, the
neural networks, or the interactions being taken. It approaches
the problem through a pure mathematical way, in which it tries
to �nd the best parameter vector to get the highest total rewards
by repeatedly adjusting and revising its current values. With no
assumptions about the structure of the relationship between the
parameter vector and the reward (except that there is a de�nite
way to evaluate it), the optimization process can be completely
decoupled from the speci�c target problem.

Actually, ES can be seen as a modi�ed version of Reinforcement
Learning where the agent’s actions are to emit entire parameter vec-
tors using a gaussian policy. Compared to traditional Reinforcement
Learning, ES is mainly di�erent in the four aspects:
• ES injects noise directly in the parameter space while RL
normally injects noise in the action space and uses backprop-
agation to compute the parameter updates.
• ES does not need backpropagation but only requires the
forward pass of the policy, which makes both the code and
the network simpler.
• ES is highly parallelizable because it only requires workers
to communicate a few scalars between each other instead of
synchronizing entire parameter vectors.
• ES provides structured exploration by, similar to Q-learning,
using deterministic policies to achieve consistent explo-
ration.

For BipedalWalker-v2, we implemented the ES model based on
evostra, a Python package for Evolution Strategy.

4.2 Reinforcement Learning Algorithm
In this project, we also utilized a reinforcement learning algorithm
to learn the walking controller for our BipedalWalker. The �rst
part of this section will introduce how we formalize the motion
control problem into a reinforcement learning problem, and the
rest of this section will explain the details of our algorithm and
implementation.

The goal of reinforcement learning is to �nd out an optimal
policy πθ (a |s) which can maximize the total rewards. A policy
πθ (a |s) is a function of state s with a set of parameters θ . Given
a state, the policy πθ will determine what action should be taken

given current state. Since both policy and motion controller per-
form similar function (i.e., given a state determines what action
should be taken in the next step), instead of learning a motion con-
troller, we can learn an optimal policy by utilizing reinforcement
algorithm. Therefore, we can learn the walking controller for the
BipedalWalker by utilizing a reinforcement learning algorithm.

In Figure 2, a whole picture of reinforcement learning architec-
ture is given[8]. There are two main modules: the Environment
module and the Agent module. These two modules interact with
each other. Speci�cally, the agent can perform an action based on
the observation of current environment state, which in turn will
change the environment to another state.

Technically, the observation not only contains the perception
from the environment but also contains the information of the agent
itself. The information of a agent, for example, may contain position
and dynamic information of the agent. The environment will also
return a Reward, which is a real number, to the agent. The Reward
is a function of state and action, which evaluate the behavior of the
agent on a speci�c state. Given a state st and an action at (action
at is taken at state st), the reward could be represented as r (st ,at).

Figure 2: Reinforcement Learning Architecture

As shown in Figure 2, the core part of the Agent module is a
deep neural network which takes observation as input and outputs
an action. In other words, this neural network represents the policy
πθ (a |s) which determines what action should be taken in the next
step given current state. Therefore, in order to �nd the optimal
policy, we need to �nd out a set of appropriate parameters θ for
the deep neural network.

The technique that we improve the policy (i.e., the neural net-
work parameters) is called Policy Gradient. A generic policy gradient
work�ow is shown in Figure 3. Initially, we start with a random
policy πθ0 (i.e., random parameters in the deep neural network).
Then we apply such random policy πθ0 to the agent and generate a
bunch of state-action pairs (si ,ai). We then �t the learning model
with these state-action pairs and evaluate the behavior of the agent
based on the reward function r (si ,ai). Once we have the evaluation
of the agent running policy πθ0 , we can improve the policy based
on the evaluation and update the policy to πθ1 . Then we replace
πθ0 with πθ1 and run the iteration again. In every iteration, we
improve the policy and then apply the new updated policy in the
next iteration. The intuition behind this is that, hopefully, the policy
will converge to an optimal state.

The goal of reinforcement learning is to �nd an optimal policy
that can maximize overall rewards. Since we use a deep neural
network to represent the policy, we want to �nd a set of parameters
θ that canmaximize the total rewards. Therefore, we have following

3

Figure 3: Policy Improvement Work�ow

equation,
θ∗ = argmax

θ
J (θ)

where θ∗ denote the optimal policy parameter and J (θ) represents
the expectation of total rewards under policy πθ which is de�ned
by the following equation,

J (θ) = Eτ∼πθ (τ)

[T∑
t
r (st ,at)

]
in which τ denotes a series of state-action pairs (si ,ai) generated
by policy πθ , and T denotes the number of state-action pairs.

Since the problem we want to solve is in a continues space
(i.e., both of the state space and the action space are continues),
we cannot calculate the expectation directly if we do not know
the underlaying distribution. In order to calculate the expectation,
Monte Carlo approximation is adopted. Thereby, we can rewrite
J (θ) in the following form,

J (θ) ≈ 1
N

N∑
i

Ti∑
t
r (si,t ,ai,t)

whereN is number of times sampling from policy πθ , andTi denotes
the number of state-action pairs in sample i . We then take the
derivative of J (θ), so that we can have the following equation,

∇θ J (θ) =
1
N

N∑
i=1

(Ti∑
t=1
∇θ logπθ

(
ai,t |si,t

))
Q̂i,t

where Q̂i,t is the estimate of expected reward if action ai,t is taken
at state si,t , and it could be calculated based on following formula,

Q̂i,t =

(Ti∑
t ′=t

r (si,t ′ ,ai,t ′)
)

Once we have the derivative of J (θ), policy could be updated
based on the following formula,

θ
′ ← θ + α∇θ J (θ)

where α is the learning rate, θ is the current policy parameters, and
θ
′ is the updated policy parameters.
The intuition behind the policy gradient is similar to the idea

of gradient descent/ascent, i.e., take the derivative of the objective

function and approach to the local optimal closer and closer dur-
ing every iteration. A problem in the policy gradient is that we
cannot calculate the objective function J (θ) accurately. The way
we calculate the objective function is based on Monte Carlo ap-
proximation. Speci�cally, we use Q̂i,t as the estimation of expected
reward if action ai,t is taken at state si,t . Since Q̂i,t calculates the
expected reward only based on a single sample under policy πθ (i.e.,
the summation of all rewards after (si,t ,ai,t) in sample i), it may
cause high variance in the estimation. Therefore, in our project we
applied Actor-Critic algorithm, which is an advanced variant of
policy gradient, for a better policy evaluation.

In Actor-Critic algorithm, instead of estimating the expected
reward based on the Q̂i,t function, it utilizes a deep neural network
to estimate the expected reward. The neural network that estimates
the expected reward is called Critic, whereas the neural network
that performs policy gradient is call Actor. The Actor updates its
parameters (i.e., updates the policy) based on the estimation of
expected reward from the Critic.

The Critic neural network performs supervised regression learn-
ing algorithm, the objective function is described as following,

L(ϕ) = 1
2

∑
i

������V̂ π
ϕ (si) − yi

������2
where ϕ represents the parameters in the Critic neural network,
V̂ π
ϕ (si) is the value function which indicates the expectation of the
total reward at state si , and yi represents the target value.

More speci�cally,yi is calculated based on the following formula,

yi,t ≈ r (si,t ,ai,t) + γV̂ π
ϕ (st+1)

where t is the timestamp and time t and γ is the discount factor for
the value function. The intuition behind the discount factor is that
better to get rewards sooner than later.

Algorithm 1: Online Actor-Critic Algorithm
repeat

1. Take action a ∼ πθ (a |s), and get (s,a, s ′, r)
2. Update value function: V̂ π

ϕ ← r + γV̂ π
ϕ (s
′)

3. Evaluation: Âπ (s,a) = r (s,a) + γV̂ π
ϕ (s
′) − V̂ π

ϕ (s)
4. ∇θ J (θ) ≈ ∇θ logπθ (a |s) Âπ (s,a)
5. Update policy: θ ′ ← θ + α∇θ J (θ)

until policy converged;

The whole Actor-Critic algorithm is shown in Algorithm 1,
where Âπ (s,a) indicates the advantage of the action a (i.e., how
much better taking action a at state s than average). What’s more,
in the Actor-Critic algorithm we replace the Q̂i,t function with the
Âπ (s,a).

In order to accelerate the training process, we apply an asyn-
chronous advantage actor-critic (A3C) [4] method to accelerate
the Actor-Critic algorithm. The idea behind the A3C algorithm
is that we can run multiple copy of Actor-Critic algorithm simul-
taneously, and each copy of Actor-Critic will help each other by
sharing global parameters. A simple example of A3C architecture is
shown in Figure 4. There are 4 workers (i.e.,W0,W1,W2,W3), each
worker runs a copy of Actor-Critic algorithm. Workers share their
knowledge by utilizing the Golbal_Net where workers share their

4

learned parameters. If a worker �nish one round of its iteration,
it will upload its parameters to the global net. Once the global net
receives the parameters from the worker, it will update its own
parameters. The worker then will fetch the latest parameters from
the global net to its local networks and start a next iteration.

Figure 4: A Simple Example of A3C Architecture

5 EXPERIMENTS
In our project, we train a simple model "bipedalwalker" and a com-
plicated one named bipedalwalker-hardcore. Also, in bipedalwalker,
we use evolution strategy and A3C algorithm to train that model
and use A3C to train bipedalwalker-hardcore.

The results we present are divided into two part. In �rst part,
we show the result in simple mode–"bipidalwalker" with evolution
strategy, and then show the result in both simple and complicated
mode with A3C algorithm. In bipedalwalker-hardcore, we train
the "walker" to learn from 5 di�erent classes of terrain randomly.
In A3C, all networks are built and trained using pytorch. Source
code is available at https://github.com/TooSchoolForCool/CS275-
Parkour-Go.

5.1 Evolution Strategy Experiments
In order to estimate the Evolution Strategy model, we record every
episode’s reward to see the trend of this model.

0 100 200 300 400 500 600 700 800

Number of iterations

-150

-100

-50

0

50

100

150

200

250

300

R
e
w

a
rd

Figure 5: Evolution Strategy reward

In Figure 5, we could see that the curve is unstable and has a
little vibration but increases gradually. Within limited episode, this
algorithm could converge �nally.

The instability exposed in the experiments is mainly due to
the randomized noise injection mechanism of Evolution Strategy.
Because it is by directly injects Guassian noise in the parameter
space, the noise has more in�uence on the overall optimization
process, which may lead to various levels of performance. As we

conducted more experiments, we found that the ES algorithm may
not always converge to a good results. In few cases, the agent
might fall into a self-locked state where it keeps a steady but locked
stance with no further advancement. We suspect that it is also
due to the accidentally unwanted noise injection. It requires more
experiments to understand the exact reason. All in all, we found
Evolution Strategy simple and intuitive to implement, but not so
stable or reliable for this problem. Therefore, we focused more on
the Reinforcement Learning method based on A3C algorithm.

5.2 A3C Experiments
In order to estimate our model, we use the logging package to
record every episode’s reward and mean reward. Also, we record
test result in video.

The training time dominated by the complexity of environment
that "walker" need to learn, which means that the more complicated
the environment is, the more exploration work that the model need.
Because in hardcore mode, we need the policy that could deal
with all these terrain classes,thus, the model’s training time was
very long. In contrary, the simple mode "bipedalwalker" only need
about 7 hours’ training and converge quickly. The plot below is the
reward in each episode: In Figure 6, remove the noise point, we

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of iteration
×10

4

-100

-50

0

50

100

150

200

250

300

350

E
p
is

o
d
e
 r

e
w

a
rd

Figure 6: Simple mode Episode reward

could conclude that nearly every epoch, the "walker" could learn
and run to the end and learning result is very good. In Figure 7, we
could conclude that A3C algorithm have a good performance in
this simple mode. It converge quickly and steady.

After a long-time training, we could see the "Hardcore" plot
below:

In Figure 8, we could see that although episode reward has a
concussion pattern, through depth blue point, episode reward has
a increasing tendency totally.

In Figure 9, the mean reward con�rm our assumption above, the
reward increases continuously, which shows that our model could
learn how to �nish that task step by step. Since this "hardcore" mode
is very di�cult, maybe we need more time to train it to converge.
After longer training, it could have a better performance in this
di�cult mode.

In Figure 10, with the comparison of two algorithms in same
mode(upper is A3C,lower is Evolution), we could see that two

5

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of iterations
×10

4

-100

-50

0

50

100

150

200

250

300

350

a
v
e
ra

g
e
 r

e
w

a
rd

Figure 7: Simple mode Average reward

0 1 2 3 4 5 6

number of iteration ×10
4

-150

-100

-50

0

50

100

150

e
p

is
o

d
e
 r

e
w

a
rd

Figure 8: Hardcore mode Episode reward

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of iterations
×10

4

-100

-50

0

50

a
v
e
ra

g
e
 r

e
w

a
rd

Figure 9: Hardcore mode Average reward

algorithms use di�erent way to balance the "walker" when running
in same simple terrain. The evolution strategy use front-balance to
balance their heavy head and make itself a slightly backwards. But
with A3C algorithm, it shows a good double-balance position and
make itself lean forward. In Figure 11, it is very tough for "walker"
to pass the stair. And the gesture is not nature and seems to failed
down immediately. In Figure 12, when the "walker" meets the block
task, he gets the best gesture to pass it, but maybe he needs more
time of training to make a balance when pass it.

Figure 10: Evolution and A3C in simple mode

Figure 11: Pass stair successful

Figure 12: Pass block failed

Figure 13: Pass big block

Figure 14: Pass small block

In Figure 13and Figure 14, these �gures show the successful
pattern which we crop from another person’s 80 hours’ training
result. The "walker" in this �gure performance as a jumper,which
is natural and stable. Although we have add a short-term memory
to help "walker" to combined all the previous observations stored
in the queue and reconstruct the whole picture, it need a large
quantity of time to train it. And in our result, it has a good trend
to pass the blocks, maybe more training time could make a better
performance in future.

6 CONCLUSION
In this project, we have presented a deep reinforcement learning al-
gorithm A3C and evolution strategy, and based on those algorithm

6

we add LSTM to actor-critic experts to model for helping "walker"
to see whole picture and improve performance. The architecture
generates the control policies which can work for complicated ter-
rain adaptive locomotion. With the result in Figure 10, after giving
the model a "think" net like actor-critic, the "walker" could have the
correct way to exploration. However, for evolution strategy,it does
not give a clear direction for the model to explore "new" gesture
to pass di�erent terrain. Also, without LSTM in model, evolution
strategy may be limited into local minimum easier. That’s why it’s
gesture is a slight bit backwards(only focus on passing and do not
focus on better balance position).

However, there is also some problems in A3C. Since it’s actor
part and critic part are connected, in some cases, the network will
go into a endless loop. Fortunately, there is a updated algorithm
called Deep Deterministic Policy Gradient, which could solve the
endless loop problem.

In our future work, we will reduce deviation from proven good
policies and trust region policy optimization based on Deep Deter-
ministic Policy Gradient algorithm. Most importantly, we will try a
longer training time in our new model.

We believe that RL method with deep neural network will have a
good performance in physics-based character control and be applied
wildly in the future.

ACKNOWLEDGMENTS
The authors would like to thank their professor Demetri Terzopou-
los and TA for their valuable instructions and helpful mentoring.

REFERENCES
[1] Nikolaus Hansen and Andreas Ostermeier. 1996. Adapting arbitrary normal

mutation distributions in evolution strategies: The covariance matrix adaptation.
In Evolutionary Computation, 1996., Proceedings of IEEE International Conference
on. IEEE, 312–317.

[2] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval
Tassa, Tom Erez, ZiyuWang, Ali Eslami, Martin Riedmiller, et al. 2017. Emergence
of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
(2017).

[3] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274 (2017).

[4] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronousMethods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).
arXiv:1602.01783 http://arxiv.org/abs/1602.01783

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[6] Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2015. Dynamic Terrain
Traversal Skills Using Reinforcement Learning. ACM Trans. Graph. 34, 4, Article
80 (July 2015), 11 pages. https://doi.org/10.1145/2766910

[7] Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017.
DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement
Learning. ACM Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages. https:
//doi.org/10.1145/3072959.3073602

[8] PVoodoo. 2017. Deep Reinforcement Learning for Trading, NOPE!
(2017). https://2.bp.blogspot.com/-bZERYUNyjao/Wa98yt7GjhI/AAAAAAAAC
t8/SYQjUNrbe1YDtKTMKR6LPt68C0pPqkoowCLcBGAs/s1600/DRL.JPG [Online;
accessed March 26, 2018].

[9] Doo Re Song, Chuanyu Yang, Christopher McGreavy, and Zhibin Li. 2017. Recur-
rent Network-based Deterministic Policy Gradient for Solving Bipedal Walking
Challenge on Rugged Terrains. arXiv preprint arXiv:1710.02896 (2017).

[10] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[11] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen
Schmidhuber. 2014. Natural Evolution Strategies. J. Mach. Learn. Res. 15, 1 (Jan.
2014), 949–980. http://dl.acm.org/citation.cfm?id=2627435.2638566

7

http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://doi.org/10.1145/2766910
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
https://2.bp.blogspot.com/-bZERYUNyjao/Wa98yt7GjhI/AAAAAAAACt8/SYQjUNrbe1YDtKTMKR6LPt68C0pPqkoowCLcBGAs/s1600/DRL.JPG
https://2.bp.blogspot.com/-bZERYUNyjao/Wa98yt7GjhI/AAAAAAAACt8/SYQjUNrbe1YDtKTMKR6LPt68C0pPqkoowCLcBGAs/s1600/DRL.JPG
http://dl.acm.org/citation.cfm?id=2627435.2638566

	Abstract
	1 Introduction
	2 Related Work
	3 Simulation Environment
	4 Methodology
	4.1 Evolution Strategy
	4.2 Reinforcement Learning Algorithm

	5 Experiments
	5.1 Evolution Strategy Experiments
	5.2 A3C Experiments

	6 Conclusion
	Acknowledgments
	References

