
Solving Rubik’s Cube with Denso and DC motor

Yunchu Zhang, Jiahao Li, Boan Tao

Abstract— Vision robotic system plays an important role in
manufacturing and industrial automation. This project aims to
build such a system to solve complex Rubik’s Cube problem
with Denso and DC motor. By virtue of several image processing
and control methods, the Rubik’s Cube solver system works
successfully.

I. INTRODUCTION

In modern industry, robotic arms are increasingly being
used to enhance effective productivity in dangerous or ac-
curacy required work. Those robotic arms with integrated
system have strong competitive advantage over ”blind” ones.
First, with the assistance of vision system, they are flexible
in functionality. on the contrary ”blind” robots can only
execute a series of simple and repetitive task. They need
reprogramming for different tasks in respect of location,
size and function. Second, vision system ensures the safety
of human-machine collaborative work by identifying nearby
humans and turning off or slowing down to avoid collision.
Vision robotic system has variety of applications such as
assembly, packaging and palletizing which need integrated
camera locating or reading objects and then guiding robotic
arm’s motion.

II. OBJECTIVES

• Accurate color detection of each grid of Rubik’s Cube
with Web camera.By means of image processing meth-
ods, image results should be immune of position and
intensity of light source and environment noise.

• Effective trajectory planning and following of Denso
robotic arm by applying forward and inverse kinematic
equations and solid control method.

• Real-time grippers position and force control to grasp
Rubiks Cube and cooperate with Denso robotic arm .

• Precise decentralized position control of DC motor as
well as the bottom surface of mounted Rubiks Cube
using designed PWM control signal input.

• Practical 3D printing models of Rubik’s cube holder,
gripper’s rod and camera base plate.

III. HARDWARE SYSTEM

In our system, DC motor was controlled by myrio and
Denso robot arm ,gripper are controlled by laptop. Also, web
camera acts as a set of eyes that detect color and position
of a randomly shuffled Rubiks cube. To connect the robot
arm and gripper, we plug in their cables to computer and
distribute different IP address which could solve the conflict

Fig. 1. Whole equipment

problem when sent control commend to them at the same
time. As to the DC motor part, encoder is used to count the
angle that motor rotate and sent those information to myrio.
Both of them are build in one labview project and the codes
are in different part(myrio codes at myrio folder, main.vi at
my computer folder)

Fig. 2. Hardware

IV. SOFTWARE SYSTEM

To implement the system, Matlab, Labview are used for
coding. Firstly, through web camera, rubik’s cube’s color
could be detected and record in labview’s memory. After that,
through image process and a open source labview rubik’s
cube solver [1], the solution could be attained. Then, the
solution will be sent to Matlab via serial communication.
Then, in conrtol main loop, denso, gripper and motor will
be controlled continuesly.

In matlab, we utilize inverse kinematic to get the certain
rotation commands and transform those commands into the
form that denso, gripper and motor required.

V. METHOD

A. Vision processing

Because web camera stores images in RGB plane, to re-
duce bit requirement and increase processing speed, chroma



Fig. 3. Software

components are sub-sampled with respect to the black-and-
white or luma component. In other word, the image obtained
is converted from RGB to YCbCr via Labview program
basing on following equations [2]

Y =
77

256
R+

150

256
G+

29

256
B (1)

Cb = − 44

256
R− 87

256
G+

131

256
B + 128 (2)

Cr =
131

256
R− 110

256
G− 21

256
B + 128 (3)

To remove Salt and pepper noise generated by image sensor,
transmission channel and reduce interrupt from environment
noise, median filter toolbox in Labview is applied to process
the image data. Then, area samples in 9 grids in each surface
of Rubiks Cube are extract to compare with threshold value
(brightness Y and color difference CrCb) for different color.
Basing on those sample result, 6 colors are assign to each
grids correctly. For different light source, threshold can be
adjusted by average 6 color samples.

B. Kinematics

To solve a Rubik’s cube in a random configuration, we
need to control the Denso robotic arm to follow a designed
trajectory. After solving for a solution by vision part of the
system, we would break the whole solution down into several
isolated part. The arm and the controller would execute each
isolated part of the solution separately which is expressed in
alphabet R and R’ (Rotate right face (counter)clockwise),
L and L’(Left), U and U’(Up), D and D’(Down), B and
B’(Back), F and F’(Front).
The trajectory planning will be based on cartisian space
trajectory, which is aimed to control the end-effector of the
arm to move in a straight line between via points which is
exactly what we want in the planning part while designing
for each trajectory of the step.
The trajectory planning is based on kinematics of robotic
arm. The forward kinematics problem is related between the
individual joints of the robot manipulator and the position
and orientation of the tool or end-effector. The joint variables
are the angles between the links for revolute or prismatic
joints, and the link extension in the prismatic or sliding joints.
A systematic way of describing the geometry of a serial chain
of links and joints was proposed by Denavit and Hartenberg
and is known today as Denavit-Hartenberg(DH) notation.

[3]The matrix A representing four movements is found by
postmultiplying the four matrices giving four movements to
reach frame j-1 to frame j in fig.4 Transformation between

Fig. 4. DH representation of a general purpose joint-link combination

two joints in a generic form is given in

j−1Aj =


cosθj −sinθjcosαj sinθjsinαj ajcosθj
sinθj cosθjcosαj −cosθjsinαj ajsinθj
0 sinαj cosαj dj
0 0 0 1


(4)

Denso Robot is a 6 degree-of-freedom robotic manipulator.
The link lengths are given in Figure.5. World frame and joint
frame used in calculations are shown in Figure.6

Fig. 5. Link Length of Denso Robot

The following table shows DH parameters of the Denso
robot arm necessary to derive the kinematics of the robot.



Fig. 6. World frame and joint frames

Gripper is not included in the analysis.

i θi di ai−1 αi−1 Joint Limits
1 q1 d1 0 90 -160,160
2 q2 0 a2 0 -120,120
3 q3 0 a3 -90 20,135
4 q4 d4 0 90 -160,160
5 q5 0 0 -90 -120,120
6 q6 d6 0 0 -360,360

where d1 = 0.125m, a2 = 0.21, a3 = −0.075, d4 = 0.21
and d6 = 0.07, and the length of our gripper is 0.12m.
The homogeneous transformation matrix from base frame to
end-end-effector could be expressed as

0
6T =


nx ox ax Px

ny oy ay Py

nz oz az Pz

0 0 0 1

 (5)

We will use the robotics toolbox in MATLAB to calculate
the homogeneous transformation matrix. For the inverse
kinematics of the arm, also use the SerialLink.ikine function
in the MATLAB Robotics Toolbox. For more details, see the
code attached in the appendix.

C. Control

In control part, the main idea is trajectory following and
pose maintenance of the center the Rubiks cube by decen-
tralized position control of Denso robotic arm using inverse
dynamics. Since the Denso arm’s package has contained the
controller, we only need to input trajectory pareameters and
put the face to be rotated in the bottom for each step. Besides,
we design a decentralized position controller (from lecture)to
control the mount of Rubiks cube to conduct rotation of each
step of solution. Finally, We will use Grippers force sensor
to control force quantity when grasping object and avoid
rubik’s cube slipping.

The controller are designed as figure 8 shows. The motor
will set zero position until it receives rotation command. And
error between the set command and encorder number could
be transformed into PID controller. Then the PID controller
will output duty cycle to motor. Before the motor receive
rotation command,denso will send rubik’s cube to the above

Fig. 7. Lecture Note for decentralized control

Fig. 8. PID controller

of the mount.Then, the gripper will release and then grape
it again to make sure rubik’s cube is in the certain position
of mount.After these series of action, motor will rotate it
to right position. As you can see in the figure bellow, there
exists interspace between Rubik’s cube and mount since the
denso robot arm has some little error when it be controlled
to one position. These interspace will result the steady error
in rotate action. Thus, we tuned the PID parameter especially
the Integration part to figure out this problem.

Firstly, we set a large P parameter 0.1 from the figure, it
has a big vibration.

Then, we set a small P parameter 0.009 from the figure,
there is no vibration but has a big steady error, which means
that the P is not big enough to decrease the error. And
then we try many times to get a good P=0.005, in this
case, the plot not only does not have vibration but has little
steady error and quick response. In the next step, we add PD
control (P=0.005,D=0.00011)to get quick response and little
overshot. At last, to overcome overshot and steady error in
hardware’s limitation, we add I=0.005 to accumulate error

Fig. 9. Interspace between Rubik’s cube and mount



Fig. 10. Large P

Fig. 11. Small P

and could have response when error is very small(such as
1 2 degree).

Since myrio and laptop’s code could not be run at the
same time, thus, a zero button need to be put in the whole
project. To achieve real-time control, I design a special logic
like the figure bellow.

Firstly, the myrio code runs and set zero position for the
motor. Then, the control part runs and make initialization.
At last, when I click one button, the control loop could sent
commend to 3 end-effector together. In control’s main loop,
we set 2000 ms time delay to make three end-effectors could
receive same sequence’s command in one control loop.

VI. RESULTS

A. Color Detection

By average samples of 6 colors, thresholds range of them
are determined shown below. Corresponding color detection
result reveals that the whole program works precisely and
responsively. The colors of cubes in each surface are then

Fig. 12. Good P

Fig. 13. Good PD

Fig. 14. Good PID

stored in the form of array which are sent to solver Labview
program.

B. Trajectory Planning

By using the MATLAB Robotics Toolbox, we could get
how the joint angle of each joint changes while executing
different steps. The following shows the time history of each
joint angle for each solution.

The reason why the joint angles do not change in D is
that while executing this step, the robot arm will not move.
Instead, the DC motor will rotate the face.

The results show a good performance of trajectory plan-
ning using Cartesian space method for the robot arm while
executing each step of solution, it could successfully avoid
collision with the environment in the implementation.

C. Motion Control

From the output about PWM in motor, we can see that,
it shows the important function when the Rubik’s cube was
put or moved from the mount.It could make mount at stable

Fig. 15. Real time process



Fig. 16. Threshold value of 6 colors

Fig. 17. Color detection result

Fig. 18. Joint angles of U

Fig. 19. Joint angles of D

Fig. 20. Joint angles of R

Fig. 21. Joint angles of L

Fig. 22. Joint angles of F

Fig. 23. Joint angles of B



position and resist being moved. The little vibration means
the resist process.

Fig. 24. Result in PWM output1 which could indirectly reflect error time
history

Fig. 25. Result in PWM output2 which could indirectly reflect error time
history

The whole result will be shown in our video demo. Having
seen that demo, you could conclude that our controller could
achieve the basic rotation goal in a quick response.

VII. DISCUSSION

A. Capabilities

• Precise color detection of each grids of Rubik’s Cube
and acquisition of corresponding solutions via open-
source solver Labview program.

• Effective trajectory planning with forward and inverse
kinematic equations to Denso Robot arm.

• Real-time control and smooth coordination of Denso
robotic arm, gripper and DC motor.

• Direct-Force control and decentralized position control
with PID.

B. limitations

• Manual change of threshold value of colors basing on
different light source.

• A gap between real error and compute error in Rubik’s
Cube’s position caused by inter space between mounting
base and Rubik’s Cube

• Limitations on control the Denso Robot arm since it has
own package which could not be changed.

C. Future improvement

The design can be further improved in following respects.
First, the accuracy of hardware equipments need to be
improved to ensure more accurate position control. For
example, the square solid mounting base is replaced by a
kind of hollow four-sided clamp. Second, a model-based
controller such as state-feedback observer control is designed
so that logical analysis of the whole system can be assessed.
Third, two Denso robotic arm are applied instead of motor to
complete the task as a simulation of industry working space.
Fourth, position of edges are detected via web camera to
check whether each step is perfectly complete. Then position
data as feedback is sent into the controller design to optimize
system’s performance.

VIII. CONCLUSION

As the Denso robotic arm, gripper, DC motor and 3D
printing service are provided by laboratory, total cost of
the project is around 100 dollars for web camera and other
tools like tapes and lubricating oil. The whole robotic system
achieves the goal successfully which can also extend to other
applications. With the assistance of vision system feedback,
accurate trajectory planning and precise position control
methods, it meets most of requirements of industrial utility.

IX. APPENDIX

As to Denso arm and gripper, we strongly recommend
that there should be a manual for guiding students to utilize
it quickly. Since it took us too much time on figuring
out connection and communication methods among those
hardware equipments and computer. Also, another thing need
to do is trying to get access to source code of Denso
package library. With that code, more control methods can
be implemented basing on it.

A. Contribution

All members take part in design and tune PID controller.
• Yunchu Zhang: Whole hardware connection and com-

munication. Whole Software integration and LabVIEW
coding to implement following tasks: a) Use LabVIEW
to control the Schunk Gripper (e.g. given an input
(defined whatever you like) to control the gripper to
grip the rubik, such as making the distance b/n the two
finger 56mm. b) Given joint angles, use LabVIEW VI
to control Denso robot arm. c) Control DC motor with
decentralized position control method. d) Collaborate
with Boan to figure out how to combine the computer
vision part and the control of denso part.

• Boan Tao: Mainly design vision system. a) Hardware
selection and purchase. b) Communication between en-
vironment and computer via web camera. c) Real-time
image processing and color detection using Labview. d)
Solve the Rubik’s Cube and send corresponding solution
to main control computer by series communication
basing on motion criteria formulated by Jiahao.

• Jiahao Li: Design a base for the camera that Boan chose.
Decide the best position for the rubik to reach a best



manipulability. Design the trajectory for each action of
the Denso a) Rotate the upper surface in clockwise
direction for 90 degree. b) Flip the rubik in order to
rotate the right surface Do a simulation in MATLAB
for each action.

B. Labview and Matlab code Screenshot

Following figures are screen shot of some parts of Labview
and Matlab program and corresponding code. The detail of
them can be looked up in the submitted folder.

Fig. 26. Motion control Labview code

Fig. 27. Vision system Labview code

Fig. 28. Part of Matlab code

REFERENCES

[1] Brownan,Rubiks-Cube-Solver,2017,GitHub
repository,https://github.com/brownan/Rubiks-Cube-Solver

[2] Charles Poynton, Digital Video and HDTV, Chapter 24, pp. 291292,
Morgan Kaufmann, 2003.

[3] Mehmet Erkan and Memik Taylan, Forward and Inverse Kinematics
Analysis of Denso Robot.


